Search results

Search for "nanoparticle array" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2020

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • -scattering leads to an increase in line width and thus reduces the resolution of this patterning technique. Keywords: accelerating voltage; electron beam; gold; Monte Carlo simulation; nanoparticle array; Introduction Techniques to fabricate assemblies or arrays of nanostructures on a desired area have
PDF
Album
Full Research Paper
Published 26 Jul 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • sol–gel silica at 550 °C and then dewetted at high temperatures (≈300–500 °C) to form nanoparticles. Figure 5 shows the visual appearance of a transparent glass substrate with a Ag nanoparticle array at low magnification. The metal nanoparticles formed in a square region of approximately 20 × 20 mm2
PDF
Album
Letter
Published 12 May 2017

Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers

  • Patrick A. Reissner,
  • Jean-Nicolas Tisserant,
  • Antoni Sánchez-Ferrer,
  • Raffaele Mezzenga and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 2057–2064, doi:10.3762/bjnano.7.196

Graphical Abstract
  • the nanoparticle monolayer consists of 20 µm wide lines spaced 100 µm apart. An optical image of the resulting electrical devices used in this study is shown in the inset of Figure 1a. The red nanoparticle array was electrically contacted by a pair of gold electrodes separated 10 µm apart. The
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2016

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • substrate. This technique could contribute to the fabrication of plasmonic devices and other applications that require the controlled placement of gold nanoparticles on substrates. Keywords: electron beam; gold; nanoparticle array; Introduction Plasmonic waveguides and circuits utilizing localized surface
PDF
Album
Full Research Paper
Published 22 Apr 2015

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • turned out to be more challenging, resulting in structures with local ordering only. Figure 1a shows a SEM image of a nanoparticle array that was microcontact printed on a SiO2 substrate. Typically, these Au-NP–S-BPP arrays reveal ordered structures on flat surfaces extending over several hundred
  • now be checked for consistency. Since we are able to estimate f from the electron microscopy images, for both the C8–gold nanoparticle array and the Au-NP–S-BPP array, we can apply the Maxwell–Garnett theory to estimate the dielectric constant εm in these arrays as well. Indeed, we find approximately
  • patterning Ti(3 nm)/Au(47 nm)-electrodes of 20 μm width, separated by a gap of around 100 nm (about 10 nanoparticles), are created on Si/SiO2 substrates. We transfer the nanoparticle array onto these electrodes via a PDMS stamp. Samples containing 2D single-layer Au-NP–S-BPP arrays typically exhibited very
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • lattice is clearly hexagonal. The scanning electron microscopy (SEM) image of the sample in Figure 1c shows that the nanoparticle array has a nearly perfect close-packed hexagonal lattice. The dispersion in the particle size at 200 nm diameter is small (approximately 1%), which favours the translation of
  • and 15 nm for 3 min etching time. Figure 3 thus illustrates the fine control of the particle size at ≈10 nm by varying the plasma etching time. The technological viability of the obtained polystyrene nanoparticle array depends on the ability to transfer it into a reliable mask to be used in subsequent
  • -mode atomic force microscopy images of a typical monolayer, with the particle diameter (and the inter-particle distance) of 200 nm on (a) a large scale and (b) a small scale. Scanning electron microscopy image of the sample (c) shows that the nanoparticle array has a nearly perfect close-packed
PDF
Album
Full Research Paper
Published 19 Dec 2012

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • gold nanoparticles on the prepatterned substrate shows a periodic wave shape, denoting the high regularity of the nanoparticle array, which is well confirmed by the autocorrelation image (inset in Figure 5e). Conclusion In summary, a combination of a “top-down” approach and “bottom-up” approaches is
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response

  • Lindarti Purwaningsih,
  • Tobias Schoen,
  • Tobias Wolfram,
  • Claudia Pacholski and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2011, 2, 545–551, doi:10.3762/bjnano.2.58

Graphical Abstract
  • -prepared gold nanoparticle array that should act as a mask upon subsequent reactive ion etching (RIE), is shown in Figure S1a (Supporting Information File 1). However, the small diameters of the gold nanoparticles (1–15 nm) are not sufficient to resist the harsh etching conditions required for the
  • kinds of laminin-functionalized substrate: A flat glass surface, a glass surface decorated with a gold nanoparticle array, and a glass surface structured with an array of gold-capped nanocones. The data shown were extracted from microscopy images taken after 24 hours adhesion time. The gold nanoparticle
  • on nanocones is approximately 40% higher compared to flat gold nanoparticles. Method used to fabricate silica nanocone arrays with gold functionalized tips. A quasi-hexagonally ordered gold nanoparticle array was deposited on a silica substrate by block copolymer nanolithography (a). Electroless
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2011

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. Keywords: Au particles; dewetting; nanoimprint lithography; nanoparticle array; Introduction An increasing amount of scientific attention is being paid to the ordered arrangement of metallic
  • was observed on a thin metal film that had been patterned using focused ion beam (FIB) before the dewetting process [34]. However, the FIB patterning is a time-consuming process. Giermann and Thompson reported the formation of a 2D ordered Au nanoparticle array, with uniform size and aligned
  • crystallographic orientation, on a substrate with an array of periodic pits, via solid-state dewetting induced by annealing at 850 °C [9]. Our previous work showed that a pre-patterned substrate with deep grid grooves can also lead to the formation of a 2D ordered Au nanoparticle array via dewetting induced by
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • -substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related
  • without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by
PDF
Album
Full Research Paper
Published 01 Dec 2010
Other Beilstein-Institut Open Science Activities